3.70 \(\int \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=75 \[ \frac {2 B \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\sqrt {2} \sqrt {a} (B+i A) \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d} \]

[Out]

-(I*A+B)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*2^(1/2)*a^(1/2)/d+2*B*(a+I*a*tan(d*x+c))^(1/2)/
d

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {3527, 3480, 206} \[ \frac {2 B \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\sqrt {2} \sqrt {a} (B+i A) \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

-((Sqrt[2]*Sqrt[a]*(I*A + B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/d) + (2*B*Sqrt[a + I*a*Tan
[c + d*x]])/d

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 3527

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d*
(a + b*Tan[e + f*x])^m)/(f*m), x] + Dist[(b*c + a*d)/b, Int[(a + b*Tan[e + f*x])^m, x], x] /; FreeQ[{a, b, c,
d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] &&  !LtQ[m, 0]

Rubi steps

\begin {align*} \int \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx &=\frac {2 B \sqrt {a+i a \tan (c+d x)}}{d}-(-A+i B) \int \sqrt {a+i a \tan (c+d x)} \, dx\\ &=\frac {2 B \sqrt {a+i a \tan (c+d x)}}{d}-\frac {(2 a (i A+B)) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{d}\\ &=-\frac {\sqrt {2} \sqrt {a} (i A+B) \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}+\frac {2 B \sqrt {a+i a \tan (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.26, size = 87, normalized size = 1.16 \[ \frac {e^{-i (c+d x)} \sqrt {a+i a \tan (c+d x)} \left (2 B e^{i (c+d x)}-i (A-i B) \sqrt {1+e^{2 i (c+d x)}} \sinh ^{-1}\left (e^{i (c+d x)}\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

((2*B*E^(I*(c + d*x)) - I*(A - I*B)*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcSinh[E^(I*(c + d*x))])*Sqrt[a + I*a*Tan[c
 + d*x]])/(d*E^(I*(c + d*x)))

________________________________________________________________________________________

fricas [B]  time = 1.07, size = 278, normalized size = 3.71 \[ \frac {8 \, \sqrt {2} B \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )} - d \sqrt {-\frac {{\left (8 \, A^{2} - 16 i \, A B - 8 \, B^{2}\right )} a}{d^{2}}} \log \left (\frac {{\left ({\left (4 i \, A + 4 \, B\right )} a e^{\left (i \, d x + i \, c\right )} + \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {{\left (8 \, A^{2} - 16 i \, A B - 8 \, B^{2}\right )} a}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) + d \sqrt {-\frac {{\left (8 \, A^{2} - 16 i \, A B - 8 \, B^{2}\right )} a}{d^{2}}} \log \left (\frac {{\left ({\left (4 i \, A + 4 \, B\right )} a e^{\left (i \, d x + i \, c\right )} - \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {{\left (8 \, A^{2} - 16 i \, A B - 8 \, B^{2}\right )} a}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right )}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(8*sqrt(2)*B*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - d*sqrt(-(8*A^2 - 16*I*A*B - 8*B^2)*a/d^2)
*log(((4*I*A + 4*B)*a*e^(I*d*x + I*c) + sqrt(2)*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-(8*A^2 - 16*I*A*B - 8*B^2)*a
/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/(I*A + B)) + d*sqrt(-(8*A^2 - 16*I*A*B - 8*B^2)*a/d^
2)*log(((4*I*A + 4*B)*a*e^(I*d*x + I*c) - sqrt(2)*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-(8*A^2 - 16*I*A*B - 8*B^2)
*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/(I*A + B)))/d

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.23, size = 63, normalized size = 0.84 \[ \frac {2 i \left (-i B \sqrt {a +i a \tan \left (d x +c \right )}-\frac {\sqrt {a}\, \left (-i B +A \right ) \sqrt {2}\, \arctanh \left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{2}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)

[Out]

2*I/d*(-I*B*(a+I*a*tan(d*x+c))^(1/2)-1/2*a^(1/2)*(A-I*B)*2^(1/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/
a^(1/2)))

________________________________________________________________________________________

maxima [A]  time = 0.78, size = 87, normalized size = 1.16 \[ \frac {i \, {\left (\sqrt {2} {\left (A - i \, B\right )} a^{\frac {3}{2}} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) - 4 i \, \sqrt {i \, a \tan \left (d x + c\right ) + a} B a\right )}}{2 \, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/2*I*(sqrt(2)*(A - I*B)*a^(3/2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(I
*a*tan(d*x + c) + a))) - 4*I*sqrt(I*a*tan(d*x + c) + a)*B*a)/(a*d)

________________________________________________________________________________________

mupad [B]  time = 0.53, size = 96, normalized size = 1.28 \[ \frac {2\,B\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{d}-\frac {\sqrt {2}\,A\,\sqrt {-a}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-a}}\right )\,1{}\mathrm {i}}{d}-\frac {\sqrt {2}\,B\,\sqrt {a}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {a}}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

(2*B*(a + a*tan(c + d*x)*1i)^(1/2))/d - (2^(1/2)*A*(-a)^(1/2)*atan((2^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*
(-a)^(1/2)))*1i)/d - (2^(1/2)*B*a^(1/2)*atanh((2^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*a^(1/2))))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \left (A + B \tan {\left (c + d x \right )}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))*(A + B*tan(c + d*x)), x)

________________________________________________________________________________________